Hidup Sehat

Depacco.com

Ujian Nasional 2012 tetap berlangsung

UN SMA/MA akan berlangsung pada 16-19 April 2012. Untuk SMP/MTs/SMPLB, UN dilaksanakan pada 23-26 April 2012. Sedangkan untuk SD/MI/SDLB, UN akan digelar pada 7-9 Mei 2012.

Image 2

blajar-lagi.blogspot.com.

Image 3

blajar-lagi.blogspot.com.

Rumah Belajar Excellent

Bimbingan Privat dengan Fasilitas terlengkap. Selain itu kami tawarkan berbagai pilihan paket yang menarik. Informasi lebih lanjut silahkan lihat di http://bimbingan-excellent.blogspot.com/

Image 5

blajar-lagi.blogspot.com.

Sunday, December 29, 2013

Download Soal UN Matematika SMK Lengkap




Gratis Download Kumpulan Soal UN SD, SMP dan SMA



Berikut ini adalah kumpulan soal UN SMK yang bisa didownload di blog blajar-pintar. Soal "UN SMK ini bisa diunduh dengan mengklik link download yang ada di bawah ini.


Kumpulan Soal UN SMK Lengkap



















Blog ini juga menyediakan paket soal asli UN, pembahasan UN, Rangkuman materi UN, Trik SMART SOLUTION dan TRIK SUPERKILAT menyelesaikan UN, dan Soal Prediksi UN....
Semoga bermanfaat!

Monday, September 16, 2013

Pembahasan Soal Statistika (Req. Andi)

Diketahui Tiga buah data:(3x-1),4x,dan (5x+1),mempunyai rata-rata hitung 8,tentukan x !

Penyelesaian:

Ingat Rumus dari Rata-rata adalah jumlah semua data yang ada dibagi banyak data. Pada soal diatas banyak datanya ada 3, yaitu (3x-1),4x,dan (5x+1). Sehingga:


Bagaimana sobat? Mudahkan?
Alhamdulillah....


Wednesday, September 4, 2013

Penyelesaian soal Volume benda putar untuk pertanyaan dari sobat Sopiyan Afandy

Tentukan volume benda putar yang terbentuk apabila daerah yang dibatasi oleh kurva y=X3, sumbu y dan garis y=3 di putar mengelilingi sumbu y.

Penyelesaian:



Ingat, Rumus untuk menentukan volume benda putar yang terbentuk oleh suatu kurva dan diputar mengelilingi sumbu y adalah:
V = π ʃ [f(y)]2 dy

untuk soal diatas:
y = X3
x = y1/3
sehingga:


Bagaimana???
Sudah mengerti kan...

Monday, June 24, 2013

Kunci Jawaban SBMPTN 2013 semua kode

Kunci Jawaban SBMPTN 2013 baik jurusan IPA maupun IPS dapat teman-teman lihat di:

Tes Kemampuan Dasar (TPA) kode soal 113116118, 213, 218, 311313318413, 418

Tes Kemampuan Dasar Umum (TKDU) kode soal 120, 123, 128, 220, 223, 224, 226, 228, 320, 323, 324, 326, 328, 423, 428,

Tes Kemampuan Dasar Soshum (IPS) kode soal 143, 148, 243, 248, 343, 443

Tes Kemampuan Dasar Saintek (IPA) kode 133, 138, 233, 238, 333, 338, 433, 438

Wednesday, June 19, 2013

kunci jawaban sbmptn 2013

kunci jawaban sbmptn 2013. bisa dilihat di sini esok hari, baik jurusan IPA maupun IPS

Kunci Jawaban SBMPTN 2013 - Kemampuan Dasar Kode 220

Kunci Jawaban SBMPTN 2013 Hari Pertama
Kemampuan Dasar 
Kode 220 
  1. C
  2. B
  3. A
  4. E
  5. E
  6. B
  7. B
  8. E
  9. D
  10. D
  11. D
  12. D
  13. C
  14. A
  15. B
  16. A
  17. D
  18. D
  19. C
  20. A
  21. C
  22. D
  23. E
  24. D
  25. A
  26. D
  27. E
  28. A
  29. D
  30. A
  31. D
  32. D
  33. E
  34. D
  35. A
  36. D
  37. B
  38. B
  39. D
  40. C
  41. B
  42. E
  43. A
  44. B
  45. A

Kunci Jawaban SBMPTN 2013 - Kemampuan Dasar Kode 120

Kunci Jawaban SBMPTN 2013 Hari Pertama
Kemampuan Dasar 
Kode 120
  1. D
  2. D
  3. C
  4. E
  5. E
  6. D
  7. C
  8. E
  9. B
  10. B
  11. B
  12. A
  13. C
  14. A
  15. C
  16. A
  17. D
  18. D
  19. C
  20. C
  21. A
  22. B
  23. D
  24. E
  25. D
  26. C
  27. D
  28. E
  29. A
  30. B
  31. C
  32. A
  33. E
  34. B
  35. A
  36. D
  37. A
  38. D
  39. B
  40. D
  41. B
  42. C
  43. E
  44. B
  45. D

Kunci Jawaban SBMPTN 2013 - Kemampuan Dasar Kode 228

Kunci Jawaban SBMPTN 2013 Hari Pertama
Kemampuan Dasar 
Kode  228
  1. A
  2. D
  3. D
  4. E
  5. E
  6. D
  7. C
  8. E
  9. B
  10. B
  11. A
  12. B
  13. D
  14. A
  15. C
  16. A
  17. D
  18. D
  19. C
  20. B
  21. D
  22. B
  23. D
  24. C
  25. C
  26. B
  27. E
  28. D
  29. B
  30. C
  31. D
  32. B
  33. D
  34. B
  35. D
  36. A
  37. C
  38. B
  39. C
  40. D
  41. A
  42. A
  43. A
  44. E
  45. E

Kunci Jawaban SBMPTN 2013 - Kemampuan dasar kode 223

Kunci Jawaban SBMPTN 2013 Hari Pertama
Kemampuan Dasar 
Kode 223

  1. A
  2. D
  3. B
  4. E
  5. E
  6. A
  7. C
  8. E
  9. B
  10. B
  11. A
  12. B
  13. D
  14. C
  15. B
  16. A
  17. D
  18. D
  19. C
  20. D
  21. E
  22. D
  23. E
  24. A
  25. C
  26. B
  27. E
  28. D
  29. B
  30. C
  31. E
  32. C
  33. E
  34. A
  35. D
  36. C
  37. E
  38. D
  39. A
  40. A
  41. E
  42. E
  43. B
  44. A
  45. E

Kunci Jawaban SBMPTN 2013 - Kemampuan dasar kode 428

Kunci Jawaban SBMPTN 2013 Hari Pertama
Kemampuan Dasar 
Kode 428 


  1. D
  2. B
  3. D
  4. E
  5. E
  6. C
  7. D
  8. E
  9. E
  10. A
  11. D
  12. D
  13. C
  14. A
  15. D
  16. A
  17. D
  18. D
  19. C
  20. C
  21. D
  22. B
  23. D
  24. E
  25. E
  26. C/B
  27. C
  28. D
  29. A
  30. D
  31. D
  32. B
  33. A
  34. B
  35. D
  36. B
  37. D
  38. C
  39. E
  40. A
  41. D
  42. E
  43. B
  44. D
  45. C

Kunci Jawaban SBMPTN 2013 Hari Pertama - TPA Kode 413

Kunci Jawaban SBMPTN 2013 Hari Pertama
Tes Potensi Akademik (TPA) 
Kode 413
  1. B
  2. B
  3. D
  4. A
  5. D
  6. B
  7. B
  8. E
  9. B
  10. E
  11. A
  12. C
  13. C
  14. D
  15. D
  16. E
  17. A
  18. E
  19. A
  20. D
  21. D
  22. E
  23. A
  24. A
  25. B
  26. E
  27. D
  28. D
  29. B
  30. E
  31. E
  32. D
  33. E
  34. A
  35. E
  36. C
  37. A
  38. D
  39. E
  40. D
  41. C
  42. A
  43. C
  44. C
  45. A
  46. C
  47. E
  48. D
  49. A
  50. B
  51. D
  52. C
  53. D
  54. A
  55. A
  56. C
  57. D
  58. C
  59. B
  60. C
  61. B
  62. A
  63. A
  64. E
  65. D
  66. C
  67. A
  68. D
  69. E
  70. A
  71. D
  72. D
  73. C
  74. E
  75. A

Kunci Jawaban SBMPTN 2013 Hari Pertama - TPA Kode 116

Kunci Jawaban SBMPTN 2013 Hari Pertama
Tes Potensi Akademik (TPA) 
Kode 116
  1. B
  2. A
  3. D
  4. B
  5. D
  6. E
  7. B
  8. E
  9. B
  10. B
  11. C
  12. C
  13. A
  14. D
  15. D
  16. D
  17. E
  18. E
  19. A
  20. A
  21. E
  22. A
  23. A
  24. B
  25. D
  26. E
  27. D
  28. D
  29. D
  30. E
  31. E
  32. B
  33. E
  34. A
  35. E
  36. C
  37. A
  38. D
  39. A
  40. D
  41. C
  42. C
  43. A
  44. E
  45. C
  46. E
  47. D
  48. B
  49. D
  50. A
  51. D
  52. C
  53. C
  54. A
  55. C
  56. C
  57. A
  58. E
  59. B
  60. C
  61. A
  62. D
  63. B
  64. A
  65. D
  66. C
  67. E
  68. D
  69. A
  70. D
  71. A
  72. D
  73. E
  74. C
  75. A

Kunci Jawaban SBMPTN 2013 Hari Pertama - TPA Kode 311


Kunci Jawaban SBMPTN 2013 Hari Pertama
Tes Potensi Akademik (TPA) 
Kode 311
  1. A
  2. B
  3. B
  4. D
  5. D
  6. E
  7. E
  8. B
  9. B
  10. B
  11. C
  12. D
  13. A
  14. D
  15. C
  16. D
  17. D
  18. B
  19. E
  20. A
  21. E
  22. A
  23. A
  24. E
  25. A
  26. E
  27. D
  28. E
  29. E
  30. D
  31. D
  32. E
  33. B
  34. A
  35. E
  36. C
  37. A
  38. D
  39. C
  40. D
  41. A
  42. A
  43. C
  44. E
  45. C
  46. A
  47. C
  48. D
  49. B
  50. E
  51. D
  52. C
  53. D
  54. E
  55. D
  56. A
  57. C
  58. B
  59. B
  60. C
  61. A
  62. A
  63. A
  64. C
  65. E
  66. C
  67. D
  68. D
  69. A
  70. D
  71. A
  72. D
  73. E
  74. C
  75. A

Kunci Jawaban SBMPTN 2013 Hari Pertama - TPA Kode 218


Kunci Jawaban SBMPTN 2013 Hari Pertama
Tes Potensi Akademik (TPA)  Kode 218



  1. D
  2. D
  3. B
  4. B
  5. A
  6. B
  7. E
  8. B
  9. B
  10. E
  11. D
  12. A
  13. C
  14. D
  15. C
  16. D
  17. B
  18. A
  19. A
  20. E
  21. A
  22. A
  23. E
  24. E
  25. D
  26. E
  27. D
  28. E
  29. E
  30. D
  31. B
  32. E
  33. D
  34. A
  35. E
  36. C
  37. A
  38. D
  39. C
  40. D
  41. A
  42. C
  43. A
  44. C
  45. E
  46. B
  47. D
  48. A
  49. C
  50. D
  51. D
  52. C
  53. E
  54. A
  55. B
  56. D
  57. A
  58. E
  59. B
  60. C
  61. A
  62. C
  63. C
  64. A
  65. A
  66. C
  67. D
  68. A
  69. D
  70. E
  71. D
  72. D
  73. C
  74. E
  75. A

Monday, February 11, 2013

PENARIKAN KESIMPULAN


Argumen adalah serangkaian pernyataan yang mempunyai ungkapan penarikan kesimpulan. Suatu argumen terdiri dari 2 kelompok pernyataan yaitu kelompok premis dan kelompok konklusi.

Contoh :
Premis 1 : Jika adik rajin belajar maka naik kelas
Premis 2 : Jika adik naik kelas maka Ibu senang
Premis 3 : Adik rajin belajar
Konklusi : Ibu senang


Suatu argumen dikatakan sah atau valid jika untuk semua kemungkinan nilai kebenaran premis-premisnya mendapatkan konklusi yang benar pula.
Ada 3 dasar penarikan kesimpulan yaitu :
1. Modus Ponens
Kerangka penarikan modus ponens sebagai berikut :


2. Modus Tollens
Kerangka penarikan kesimpulan dengan dasar modus tollens sbb :


3. Silogisme
Kerangka penarikan kesimpulan dengan metode silogisme sbb :






TAUTOLOGI DAN KONTRADIKSI


Tautologi adalah pernyataan majemuk yang selalu bernilai benar untuk semua kemungkinan nilai kebenaran komponen-komponennya.
Kontradiksi adalah pernyataan majemuk yang selalu bernilai salah untuk semua kemungkinan nilai kebenaran komponen-komponennya.

Contoh :
Buktikan dengan tabel kebenaran (p ~q) ⇒ ~(p⇒q)
Penyelesaian:




TUGAS VI
1. Tentukan konvers, invers, dan kontraposisi dari implikasi berikut :
a. Jika hujan maka jalan basah
b. Jika sakit maka Ani ke sekolah
c. Jika x = 2 maka √x > 1

2. Buktikan dengan tabel kebenaran bahwa : [p ∨ (q ∧ r)] ≡ [(p ∨ q) ∧ (p ∨ r)]

3. Tentukan negasi dari pernyataan berikut :
a. Harga mobil mahal atau Sungai Brantas di jawa Tengah
b. Segitiga ABC siku-siku jika dan hanya jika salah satu sudutnya 90°
c. p ∨ (q ∧ r)
d. p ⇒ (q ⇒ r)

4. Tentukan dengan tabel kebenaran pernyataan berikut yang merupakan tautologi dan kontradiksi
a. (p ∧ q) ⇒ (p ∨ q)
b. (p ∧ ~q) ⇔ (~p ∧ ~q)

PERNYATAAN MAJEMUK YANG EKUIVALEN DAN NEGASINYA

PERNYATAAN MAJEMUK YANG EKUIVALEN
Dua pernyataan majemuk dikatakan ekuivalen jika untuk semua kemungkinan nilai kebenaran komponen-komponennya, pernyataan majemuk itu mempunyai nilai kebenaran yang sama. Lambang ekuivalen adalah ≡


Contoh :
Buktikan bahwa: p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p).

Penyelesaian:
Dengan tabel kebenaran dapat dilihat sebagai berikut :



NEGASI DARI PERNYATAAN MAJEMUK
1. ~ (p ∧ q) ≡ ~ p v ~ q
2. ~ (p v q) ≡ ~ p ∧ ~ q
3. ~ (p ⇒ q) ≡ p ∧ ~ q
4. ~ (p ⇔ q) ≡ (p ∧ ~ q) v (q ∧~ p)

Contoh :
Negasi dari 5 + 2 = 8 dan adik naik kelas adalah 5 + 2 ≠ 8 atau adik tidak naik kelas
Negasi dari jika adik belajar maka ia pandai adalah adik belajar dan ia tidak pandai

Konvers, Invers, dan Kontraposisi


Dari implikasi p ⇒ q dapat dibentuk implikasi baru :
q ⇒ p disebut konvers dari implikasi semula
~ p ⇒ ~ q disebut invers dari implikasi semula
~ q ⇒ ~ p disebut kontraposisi dari implikasi semula

Contoh :
p : Tia penyanyi
q : Tia seniman
implikasi p ⇒ q : Jika Tia penyanyi maka Tia seniman
Konvers q ⇒ p : Jika Tia seniman maka Tia penyanyi
Invers ~ p ⇒ ~ q : Jika Tia bukan penyanyi maka Tia bukan seniman
Kontraposisi ~ q ⇒ ~ p : Jika Tia bukan seniman maka Tia bukan penyanyi

Friday, February 8, 2013

Pernyataan Majemuk (Konjungsi, Disjungsi, Implikasi dan Biimplikasi)


Pernyataan majemuk adalah gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung.
Ada 4 macam pernyataan majemuk :
1. Konjungsi
Konjungsi adalah pernyataan majemuk dengan kata hubung “dan”. Konjungsi dari pernyataan p dan q dinotasikan dengan yang dibaca p dan q
Tabel kebenarannya :


Dari tabel tersebut tampak bahwa konjungsi selalu bernilai benar jika kedua pernyataan bernilai benar.
Contoh :
p : 34 = 51 bernilai salah
q : 2 + 5 = 7 bernilai benar
p∧q : 34 = 51 dan 2 + 5 = 7 bernilai salah

2. Disjungsi
Disjungsi adalah pernyataan majemuk dengan kata hubung atau.
Disjungsi dari pernyataan p dan q dinotasikan dan dibaca p atau q
Tabel kebenarannya :

Dari tabel tampak bahwa disjungsi hanya bernilai salah jika kedua pernyataan bernilai salah.
Contoh :
P : jumlah dari 2 dan 5 adalah 7 (pernyataan bernilai benar)
q : Tugu pahlawan terletak di Jakarta (pernyataan bernilai salah)
p∨q : Jumlah dari 2 dan 5 adalah 7 atau Tugu pahlawan terletak di Jakarta (pernyataan bernilai benar)

Tugas IV
1. Tentukan nilai kebenaran dari pernyataan berikut :
a. 2 + 1 = 3 dan 2 adalah bilangan prima
b. 37 adalah bilangan prima dan ada bilangan prima yang genap
c. Semua unggas dapat terbang atau grafik fungsi kuadrat berbentuk parabola
d. Log 5 merupakan bilangan irasional atau 3 + 5 = 8

2. Jika p : Adik naik kelas
q : Adik dibelikan sepeda motor
Nyatakan dengan pernyataan majemuk :
a. p ∧ q
b. p ∨ q
c. ~ p ∧ q
d. ~ (p ∨ q)

3. Buatlah tabel kebenaran dari :
a. (p ∧ q) v (~p ∨ q)
b. [~(p v q) ] ∧ q


3. Implikasi
Implikasi adalah pernyataan majemuk dengan kata hubung “jika .... maka .......”
Implikasi dari pernyataan p dan q dinotasikan dengan p ⇒ q yang dibaca “jika p maka q” atau “p jika hanya jika q” atau “p syarat perlu bagi q” atau “q syarat cukup bagi p”
Dari implikasi p ⇒ q, p disebut anteseden atau sebab atau hipotesa
q disebut konsekuen atau kesimpulan atau konklusi.
Tabel kebenarannya :

Dari tabel tersebut, tampak bahwa implikasi selalu bernilai salah jika sebabnya benar dan akibatnya salah.
Contoh :
P : 5 + 4 = 7 (pernyataan salah)
q : Indonesia di benua eropa (pernyatan salah)
p ⇒ q : Jika 5 + 4 = 7 maka Indonesia di benua eropa (pernyataan benar)

4. Biimplikasi
Biimplikasi adalah pernyataan majemuk dengan kata hubung “.......jika dan hanya jika............” dan dilambangkan ⇔.
Biimplikasi dari pernyataan p dan q ditulis p ⇔ q yang dibaca p jika dan hanya jika q atau jika p maka q dan jika q maka p.
Tabel kebenarannya :

Dari tabel kebenaran tersebut, tampak bahwa biimplikasi akan bernilai benar jika sebab dan akibatnya bernilai sama.
Contoh :
p : 3 + 10 =14 (pernyataan salah)
q : Persegi adalah segitiga (pernyataan salah)
p ⇔ q : 3 + 10 = 14 jika dan hanya jika persegi adalah segitiga (pernyataan salah)

Tugas V
1. Tentukan nilai kebenaran pernyataan berikut :
a. Jika besi termasuk benda padat maka 3 + 5 = 9
b. Jika cos 30 = 0,5 maka sin 60 = 0,5
c. Tugu nuda terletak di Surabaya jika dan hanya jika Tugu muda terletak di Semarang.
d. √5 > 2 jika dan hanya jika 33 bilangan prima

2. Jika p : Adi menyenangi boneka
q : 5 + 3 < 10
Nyatakan dalam bentuk pernyataan :
a. p ⇒ q
b. p ⇔ q
c. ~ p ⇒ q
d. p ⇔ ~ q

3. Buatlah tabel kebenaran :
(p ⇒ q) ⇔ ( p ⇒ ~ q)
(~ p ⇒ q) ⇒ ( p ⇔ q)

Problem solving 3


Tentukan nilai dari


penyelesaian:
ingat!!!
n! = n(n - 1)(n - 2)(n - 3)....3.2.1
100! = 100.99...3.2.1

sehingga:

= 100!log 2 + 100!log 3 + 100!log 4 + .... + 100!log 100
= 100!log 2.3.4....100
= 100!log 100!
= 1



xixixixi....
ternyata mudah ya :)

Thursday, February 7, 2013

Pernyataan Berkuantor dan Ingkarannya


Pernyataan berkuantor
Pernyataan berkuantor adalah pernyataan yang mengandung ukuran kuantitas
Ada 2 macam kuantor, yaitu :

  1. Kuantor Universal.
    Dalam pernytaan kuantor universal terdapat ungkapan yang menyatakan semua, setiap.
    Kuantor universal dilambangkan dengan ∀ (dibaca untuk semua atau untuk setiap).
    Contoh :
    * ∀ x ∈ R, x2 > 0, dibaca untuk setiap x anggota bilangan Real maka berlaku x2 > 0.
    * Semua ikan bernafas dengan insang.
  2. Kuantor Eksistensial.
    Dalam pernyataan berkuantor eksistensial terdapat ungkapan yang menyatakan ada, beberapa, sebagian, terdapat.
    Kuantor Eksistensial dinotasikan dengan ∃ ( dibaca ada, beberapa, terdapat, sebagian).
    Contoh :
    * ∃ x ∈ R, x2 + 3x – 10 < 0, dibaca ada x anggota bilangan real dimana x2 + 3x – 10 < 0
    * Beberapa ikan bernafas dengan paru-paru

Ingkaran dari pernyataan berkuantor
Ingkaran dari pernyataan universal adalah kuantor eksistensial dan sebaliknya ingkaran dari pernyataan berkuantor eksistensial adalah kuantor universal.
Contoh :
a. p : Semua ikan bernafas dengan insang
~ p : Ada ikan bernafas tidak dengan insang
: Terdapat ikan bernafas dengan paru-paru
: Tidak semua ikan bernafas dengan insang
b. q : Beberapa siswa SMA malas belajar
~ q : Semua siswa SMA tidak malas belajar

Tugas III
Tentukan ingkaran pernyataan berikut :
1. Setiap bilangan prima merupakan bilangan ganjil
2. ∀ x ∈ R ; x2 + 5x – 6 = 0.
3. ∃ x ∈ R ; x2 + 4x – 5 > 0.
4. Ada siswa yang tidak menyenangi pelajaran matematika
5. Semua segitiga jumlah sudutnya 180°

Ingkaran/Negasi dari pernyataan


Ingkaran atau negasi dari suatu pernyataan adalah pernyataan yang mengingkari pernyataan semula.
Ingkaran dari pernyataan p dinotasikan ~ p dibaca “ bukan p” atau “tidak p”.
Tabel kebenarannya sbb :



Contoh :
a. p : Ayah pergi ke pasar
~ p : Ayah tidak pergi ke pasar
b. q : 2 + 5 < 10
~ q : 2 + 5 ≥ 10


Tugas II
Tentukan ingkaran / negasi dari pernyataan berikut :
1. 17 adalah bilangan prima
2. 3 adalah faktor dari 38
3. 5 x 12 > 40
4. Adikku pandai bermain gitar
5. Diagonal ruang kubus ada 4 buah.

Pernyataan dan Kalimat terbuka




Pernyataan dan Kalimat terbuka

Pernyataan
Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya.
Contoh :
a. Hasil kali 5 dan 4 adalah 20
b. Semua unggas dapat terbang
c. Ada bilangan prima yang genap
Contoh a dan c adalah pernyataan yang bernilai benar, sedangkan b penyataan yang bernilai salah.

Contoh kalimat yang bukan pernyataan :
a. Semoga nanti engkau naik kelas
b. Tolong tutupkan pintu itu
c. Apakah ali sudah makan ?

Suatu pernyataan dinotasikan dengan huruf kecil seperti p, q, r dsb.
Misalnya :
p : Semua bilangan prima adalah ganjil
q : Jakarta ibukota Indonesia

Ada 2 dasar untuk menentukan nilai kebenaran suatun pernyataan yaitu :
a. Dasar empiris : jika nilai kebenaran ditentukan dengan pengamatan pada saat tertentu.
Contoh :
* Rambut adik panjang
* Besok pagi cuaca cerah
b. Dasar tidak empiris : jika nilai kebenaran ditentukan menurut kaidah atau hukum tertentu. Jadi nilai mutlak tidak terikat oleh waktu dan tempat.
Contoh :
* Jumlah sudut dalam segitiga adalah 180°
* Tugu muda terletak di kota Semarang

Tugas I
Diantara kalimat berikut manakah yang merupakan pernyataan, jika pernyataan tentukan nilai kebenarannya.
1. Salah satu faktor prima dari 30 adalah 6
2. Jajar genjang adalah segi empat yang sisinya sama panjang
3. Dimana rumahmu ?
4. x merupakan bilangan prima
5. Tahun 2006 merupakan tahun kabisat
6. Jakarta terletak di pulau Jawa
7. Tentukan nilai x yang memenuhi persamaan x + 1 = 4!
8. Ada bilangan bulat x yang memenuhi 2x – 1 = 7
9. Jika x = 3, berapakah nilai 5x + 8?
10. Jumlah dua bilangan genap selalu ganjil

Kalimat terbuka
Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenaraanya. Ciri dasar kalimat terbuka adalah adanya peubah atau variabel.
Contoh :
a. 2x + 3 = 9
b. 5 + n adalah bilangan prima
c. Kota A adalah ibukota provinsi jawa tengah