Pernyataan majemuk adalah gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung.
Ada 4 macam pernyataan majemuk :
1. Konjungsi
Konjungsi adalah pernyataan majemuk dengan kata hubung “dan”. Konjungsi dari pernyataan p dan q dinotasikan dengan yang dibaca p dan q
Tabel kebenarannya :
Dari tabel tersebut tampak bahwa konjungsi selalu bernilai benar jika kedua pernyataan bernilai benar.
Contoh :
p : 34 = 51 bernilai salah
q : 2 + 5 = 7 bernilai benar
p∧q : 34 = 51 dan 2 + 5 = 7 bernilai salah
2. Disjungsi
Disjungsi adalah pernyataan majemuk dengan kata hubung atau.
Disjungsi dari pernyataan p dan q dinotasikan dan dibaca p atau q
Tabel kebenarannya :
Dari tabel tampak bahwa disjungsi hanya bernilai salah jika kedua pernyataan bernilai salah.
Contoh :
P : jumlah dari 2 dan 5 adalah 7 (pernyataan bernilai benar)
q : Tugu pahlawan terletak di Jakarta (pernyataan bernilai salah)
p∨q : Jumlah dari 2 dan 5 adalah 7 atau Tugu pahlawan terletak di Jakarta (pernyataan bernilai benar)
Tugas IV
1. Tentukan nilai kebenaran dari pernyataan berikut :
a. 2 + 1 = 3 dan 2 adalah bilangan prima
b. 37 adalah bilangan prima dan ada bilangan prima yang genap
c. Semua unggas dapat terbang atau grafik fungsi kuadrat berbentuk parabola
d. Log 5 merupakan bilangan irasional atau 3 + 5 = 8
2. Jika p : Adik naik kelas
q : Adik dibelikan sepeda motor
Nyatakan dengan pernyataan majemuk :
a. p ∧ q
b. p ∨ q
c. ~ p ∧ q
d. ~ (p ∨ q)
3. Buatlah tabel kebenaran dari :
a. (p ∧ q) v (~p ∨ q)
b. [~(p v q) ] ∧ q
3. Implikasi
Implikasi adalah pernyataan majemuk dengan kata hubung “jika .... maka .......”
Implikasi dari pernyataan p dan q dinotasikan dengan p ⇒ q yang dibaca “jika p maka q” atau “p jika hanya jika q” atau “p syarat perlu bagi q” atau “q syarat cukup bagi p”
Dari implikasi p ⇒ q, p disebut anteseden atau sebab atau hipotesa
q disebut konsekuen atau kesimpulan atau konklusi.
Tabel kebenarannya :
Dari tabel tersebut, tampak bahwa implikasi selalu bernilai salah jika sebabnya benar dan akibatnya salah.
Contoh :
P : 5 + 4 = 7 (pernyataan salah)
q : Indonesia di benua eropa (pernyatan salah)
p ⇒ q : Jika 5 + 4 = 7 maka Indonesia di benua eropa (pernyataan benar)
4. Biimplikasi
Biimplikasi adalah pernyataan majemuk dengan kata hubung “.......jika dan hanya jika............” dan dilambangkan ⇔.
Biimplikasi dari pernyataan p dan q ditulis p ⇔ q yang dibaca p jika dan hanya jika q atau jika p maka q dan jika q maka p.
Tabel kebenarannya :
Dari tabel kebenaran tersebut, tampak bahwa biimplikasi akan bernilai benar jika sebab dan akibatnya bernilai sama.
Contoh :
p : 3 + 10 =14 (pernyataan salah)
q : Persegi adalah segitiga (pernyataan salah)
p ⇔ q : 3 + 10 = 14 jika dan hanya jika persegi adalah segitiga (pernyataan salah)
Tugas V
1. Tentukan nilai kebenaran pernyataan berikut :
a. Jika besi termasuk benda padat maka 3 + 5 = 9
b. Jika cos 30 = 0,5 maka sin 60 = 0,5
c. Tugu nuda terletak di Surabaya jika dan hanya jika Tugu muda terletak di Semarang.
d. √5 > 2 jika dan hanya jika 33 bilangan prima
2. Jika p : Adi menyenangi boneka
q : 5 + 3 < 10
Nyatakan dalam bentuk pernyataan :
a. p ⇒ q
b. p ⇔ q
c. ~ p ⇒ q
d. p ⇔ ~ q
3. Buatlah tabel kebenaran :
(p ⇒ q) ⇔ ( p ⇒ ~ q)
(~ p ⇒ q) ⇒ ( p ⇔ q)
5 comments:
kak masih kurang ngerti nih tentang implikasi dan biimplikasi. kenapa jika premis 1 dan 2 bernilai salah, implikasi dan biimplikasinya nya bernilai benar? tolong jelasin ya kak
Terimakasih
Ini referensinya darimana ya kak
Ini referensinya darimana ya kak
Oke Lur
Post a Comment